A-1 - Encouraged by What You Read?

Nearly every high school student has been taught the results of the Miller-Urey experiment. Stanley Miller discharged electric sparks in a flask (see figure below) that he filled with the gases that he thought comprised the atmosphere of early Earth. The resultant tarry residue he scraped off the bottom of the flask in just one of 200 experimental runs contained a few of the 20 amino acids that form the building blocks for proteins.

Figure: The Miller-Urey Experiment Apparatus

Scientists around the world hailed Miller’s achievement as a major step forward in solving the problem of how natural processes can bring about the origin of Earth’s first life. Several times Stanley Miller was even nominated for—but did not win—the Nobel Prize for his discovery.

Today we know that Miller’s flask experiment is irrelevant to the origin of life. The gases he put in the flask are nothing like the gases that comprised Earth’s atmosphere at the time of life’s origin. We also know that even the tiniest amount of oxygen in Earth’s atmosphere or oceans stymies the chemical pathways that are crucial for any origin-of-life scenario.

As my colleague Fazale Rana and I reported in Facts for Faith, Serbian physicist Ivan Draganić demonstrated that at least some oxygen had to be present in early Earth’s oceans and atmosphere.1 Draganić showed that uranium and thorium were so sufficiently abundant in Earth’s crust that their radiometric decay split water molecules into hydrogen and oxygen. The resultant oxygen was more than enough to halt any natural origin-of-life synthesis.

Since the publication of the Serbian physicist’s paper,2 scientists have produced additional confirmations that early Earth’s environment was much too oxygen-rich to permit any conceivable natural origin-of-life scenario. In a review paper on the state of Earth’s mantle, geophysicists Daniel Frost and Catherine McCammon explained how the pressure (fugacity) of oxygen in the mantle has important implications for what kind of gases volcanoes release into the atmosphere both presently and long ago in Earth’s history.3

Later, in a paper published in Nature, three geochemists noted that the molecular species in gaseous volcanic emissions depend critically on oxygen pressure in the upper mantle.4 Oxygen pressures defined by the “iron-wüstite buffer” yield gases dominated by methane, molecular hydrogen, ammonia, and hydrogen sulfide (oxygen-deficient gases). Oxygen pressures defined by the “fayalite-magnetite-quartz buffer” yield gases dominated by water, carbon dioxide, nitrogen, and sulfur dioxide (oxygen-rich gases).

The geochemists then reported on their determination of the oxidation state of Hadean magmatic melts (crustal material that formed between 4.4 and 3.8 billion years ago) based on the incorporation of cerium into ancient zircon crystals. They found that the melts had “oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions.”5 They concluded that “outgassing of Earth’s interior later than ~200Myr [later than 4.350 billion years ago] into the history of Solar System formation would not have resulted in a reducing atmosphere.”6 In other words, Earth has possessed an oxidizing atmosphere throughout the past 4.350 billion years—525 million years longer than life has existed on Earth.

In a paper published in Earth and Planetary Science Letters,7 geophysicist Dante Canil concluded that “the data for Archean mantle melts and residues make clear that models cannot look to reduced mantle-driven volcanic gases containing H2 and CO to engender early life synthesis.”8 In the Forum Reply of the journal Geology, published just a few weeks ago, geologists Brian Hynek and Stephen Mojzsis asserted that “the resultant atmosphere from outgassing is correspondingly expected to have been at least mildly oxidizing from the early days [since 4.3 billion years ago].”9

All these findings leave no reasonable doubt that Earth’s environment at the time of life’s origin possessed far too much oxygen to permit any naturalistic scenario for the origin of life. The oxygen problem is just one of many reasons why a naturalistic explanation for life’s origin is not possible. The elimination of naturalistic explanations leaves just one option: A supernatural, super-intelligent, super-powerful Being assembled the first life on Earth.

Endnotes

  1. Hugh Ross and Fazale Rana, An Inside Report on ISSOL ’99: Life from the Heavens? Not This Way . . . , Facts for Faith, Reasons to Believe, January 1, 2000, http://www.reasons.org/articles/an-inside-report-on-issol-%E2%80%9999-life-from-the-heavens-not-this-way.
  2. Ivan G. Draganić, Radiolysis of Water: A Look at Its Origin and Occurrence in the Nature, Radiation Physics and Chemistry 72 (February 2005): 181–86, doi:10.1016/j.radphyschem.2004.09.012.
  3. Daniel J. Frost and Catherine A. McCammon, The Redox State of Earth’s Mantle, Annual Review of Earth and Planetary Sciences 36 (May 2008): 389–420, doi:10.1146/annurev.earth.36.031207.124322.
  4. Dustin Trail, E. Bruce Watson, and Nicholas D. Tailby, “The Oxidation State of Hadean Magmas and Implications for Early Earth’s Atmosphere,” Nature 480 (December 2011): 79–82, doi:10.1038/nature10655.
  5. Ibid., 79.
  6. Ibid.
  7. Dante Canil, “Vanadium in Peridotites, Mantle Redox, and Tectonic Environments: Archean to Present,” Earth and Planetary Science Letters 195 (January 2002): 75–90, doi:10.1016/S0012-821X(01)00582-9.
  8. Ibid., 75.
  9. Brian M. Hynek and Stephen J. Mojzsis, “The Great Mars Climate Paradox Redux,” Geology: Forum Reply 45 (February 2017): e410, doi:10.1130/focus102016Y.1.

Subjects: Early Earth, Origin of Life, Prebiotic Chemistry

Check out more from Reasons to Believe @Reasons.org

About The Author

Dr. Hugh Ross

Reasons to Believe emerged from my passion to research, develop, and proclaim the most powerful new reasons to believe in Christ as Creator, Lord, and Savior and to use those new reasons to reach people for Christ. I also am eager to equip Christians to engage, rather than withdraw from or attack, educated non-Christians. One of the approaches I’ve developed, with the help of my RTB colleagues, is a biblical creation model that is testable, falsifiable, and predictive. I enjoy constructively integrating all 66 books of the Bible with all the science disciplines as a way to discover and apply deeper truths. 1 Peter 3:15–16 sets my ministry goal, "Always be prepared to give an answer to everyone who asks you to give the reason for the hope that you have. But do this with gentleness and respect, keeping a clear conscience." Hugh Ross launched his career at age seven when he went to the library to find out why stars are hot. Physics and astronomy captured his curiosity and never let go. At age seventeen he became the youngest person ever to serve as director of observations for Vancouver's Royal Astronomical Society. With the help of a provincial scholarship and a National Research Council (NRC) of Canada fellowship, he completed his undergraduate degree in physics (University of British Columbia) and graduate degrees in astronomy (University of Toronto). The NRC also sent him to the United States for postdoctoral studies. At Caltech he researched quasi-stellar objects, or "quasars," some of the most distant and ancient objects in the universe. Not all of Hugh's discoveries involved astrophysics. Prompted by curiosity, he studied the world’s religions and "holy books" and found only one book that proved scientifically and historically accurate: the Bible. Hugh started at religious "ground zero" and through scientific and historical reality-testing became convinced that the Bible is truly the Word of God! When he went on to describe for others his journey to faith in Jesus Christ, he was surprised to discover how many people believed or disbelieved without checking the evidence. Hugh's unshakable confidence that God's revelations in Scripture and nature do not, will not, and cannot contradict became his unique message. Wholeheartedly encouraged by family and friends, communicating that message as broadly and clearly as possible became his mission. Thus, in 1986, he founded science-faith think tank Reasons to Believe (RTB). He and his colleagues at RTB keep tabs on the frontiers of research to share with scientists and nonscientists alike the thrilling news of what's being discovered and how it connects with biblical theology. In this realm, he has written many books, including: The Fingerprint of God, The Creator and the Cosmos, Beyond the Cosmos, A Matter of Days, Creation as Science, Why the Universe Is the Way It Is, and More Than a Theory. Between writing books and articles, recording podcasts, and taking interviews, Hugh travels the world challenging students and faculty, churches and professional groups, to consider what they believe and why. He presents a persuasive case for Christianity without applying pressure. Because he treats people's questions and comments with respect, he is in great demand as a speaker and as a talk-radio and television guest. Having grown up amid the splendor of Canada's mountains, wildlife, and waterways, Hugh loves the outdoors. Hiking, trail running, and photography are among his favorite recreational pursuits - in addition to stargazing. Hugh lives in Southern California with his wife, Kathy, and two sons.

Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing