Those of us who are over 60 will never forget the chilling words spoken by the Apollo 13 command module pilot, Jack Swigert, and repeated by the mission commander, Jim Lovell, late evening on April 13 of 1970, “Houston, we’ve had a problem.”

An explosion in the service module threatened the lives of the Apollo 13 astronauts. Through herculean efforts on the part of Houston Mission Control engineers and the Apollo 13 crew, all three astronauts returned safely back to Earth. In 1995, Hollywood released a technically accurate Academy-Award-winning movie depicting the dramatic events of the Apollo 13 disaster and the rescue of the crew.

NASA has not attempted a manned lunar mission since Apollo 17 in 1972. However, I think there’s scientific incentive for returning to Earth’s “attic” because of what we’ll find there.

Exploring the Attic
About 15 years ago, I was invited to speak to the scientists and astronauts at NASA’s Houston Mission Control. The Apollo 13 mission control room was preserved in the state in which it operated in April of 1970.

I knew that the NASA Houston scientists and astronauts had forgotten about the Moon and were totally focused on manned missions to Mars. In the first part of my talk I explained why manned missions to Mars would be prohibitively expensive with, at best, a small possibility of sending humans to Mars and back alive. Last year, I wrote a brief update article (“Is Gut-Wrenching Space Travel Possible?”), in which I demonstrated that the small possibility had become an impossibility.

In the second part of my talk I showed how the Moon is a veritable attic filled with treasures from Earth’s early history. Intense meteoroid bombardment of Earth during its youth has sent millions of tons of Earth rocks and soil to the Moon’s surface. One ton of Earth soil contains, on average, 100 quadrillion microbes. Furthermore, calculations show that the Earth material containing our planet’s first life-forms was deposited on the Moon via low-velocity impacts. Therefore, for most of the microbes representing Earth’s first life their morphology (structure) would be undisturbed by the impacts.

Unlike Earth, the Moon has experienced very little geological change throughout its history. Earth’s continual, intense geological activity has obliterated the fossils of Earth’s first life. The Moon, on the other hand, has preserved the fossils of Earth’s first life. I have written two articles, one before my talk at NASA Houston Mission Control and an update afterwards, wherein I cite calculations of the quantities of fossils of Earth’s first life that reside in our lunar attic.

What the Search Will Reveal
I ended my talk at NASA by showing how theists and nontheists have very different expectations on what the fossils of Earth’s first life will look like.1 Theists think Earth’s first microbes will be diverse in size, metabolism, and morphology and will include cyanobacteria with over 1,500 gene products. Nontheists think Earth’s first life will be limited to a single bacterial species no larger than 0.1 micron and containing only a few hundred gene products. NASA, I exhorted, has the opportunity to return to the Moon with a different mission. Instead of mining indigenous lunar rocks, they could recover Earth soils deposited by meteoroid delivery. In those soils will be pristine fossils of Earth’s first life. Thus, NASA has the opportunity to demonstrate who got the origin of life on Earth right, the theists or the nontheists.

At the time of my talk, NASA was facing deep funding cuts. I touted this new lunar mission as a way to restore financial support. Given that theists and nontheists make up 100 percent of U. S. taxpayers, everyone has a vested interest in learning about the origin of life. Knowing what the first life-forms looked like carries implications for evolution and creation.

Check out more from Reasons to Believe

  1. Fazale Rana and Hugh Ross, Origins of Life (Covina, CA: RTB Press, 2014),


About The Author

Dr. Hugh Ross

Reasons to Believe emerged from my passion to research, develop, and proclaim the most powerful new reasons to believe in Christ as Creator, Lord, and Savior and to use those new reasons to reach people for Christ. I also am eager to equip Christians to engage, rather than withdraw from or attack, educated non-Christians. One of the approaches I’ve developed, with the help of my RTB colleagues, is a biblical creation model that is testable, falsifiable, and predictive. I enjoy constructively integrating all 66 books of the Bible with all the science disciplines as a way to discover and apply deeper truths. 1 Peter 3:15–16 sets my ministry goal, "Always be prepared to give an answer to everyone who asks you to give the reason for the hope that you have. But do this with gentleness and respect, keeping a clear conscience." Hugh Ross launched his career at age seven when he went to the library to find out why stars are hot. Physics and astronomy captured his curiosity and never let go. At age seventeen he became the youngest person ever to serve as director of observations for Vancouver's Royal Astronomical Society. With the help of a provincial scholarship and a National Research Council (NRC) of Canada fellowship, he completed his undergraduate degree in physics (University of British Columbia) and graduate degrees in astronomy (University of Toronto). The NRC also sent him to the United States for postdoctoral studies. At Caltech he researched quasi-stellar objects, or "quasars," some of the most distant and ancient objects in the universe. Not all of Hugh's discoveries involved astrophysics. Prompted by curiosity, he studied the world’s religions and "holy books" and found only one book that proved scientifically and historically accurate: the Bible. Hugh started at religious "ground zero" and through scientific and historical reality-testing became convinced that the Bible is truly the Word of God! When he went on to describe for others his journey to faith in Jesus Christ, he was surprised to discover how many people believed or disbelieved without checking the evidence. Hugh's unshakable confidence that God's revelations in Scripture and nature do not, will not, and cannot contradict became his unique message. Wholeheartedly encouraged by family and friends, communicating that message as broadly and clearly as possible became his mission. Thus, in 1986, he founded science-faith think tank Reasons to Believe (RTB). He and his colleagues at RTB keep tabs on the frontiers of research to share with scientists and nonscientists alike the thrilling news of what's being discovered and how it connects with biblical theology. In this realm, he has written many books, including: The Fingerprint of God, The Creator and the Cosmos, Beyond the Cosmos, A Matter of Days, Creation as Science, Why the Universe Is the Way It Is, and More Than a Theory. Between writing books and articles, recording podcasts, and taking interviews, Hugh travels the world challenging students and faculty, churches and professional groups, to consider what they believe and why. He presents a persuasive case for Christianity without applying pressure. Because he treats people's questions and comments with respect, he is in great demand as a speaker and as a talk-radio and television guest. Having grown up amid the splendor of Canada's mountains, wildlife, and waterways, Hugh loves the outdoors. Hiking, trail running, and photography are among his favorite recreational pursuits - in addition to stargazing. Hugh lives in Southern California with his wife, Kathy, and two sons.

Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing