A team of 10 Chinese astronomers recently announced the first-ever discovery of a supermassive black hole binary.1 They found the binary in the galaxy NGC 5548 (see figure 1), a galaxy where more than 70 percent of its light comes from the nuclear core. Previous research teams had determined that a supermassive black hole with a mass 280 million times the Sun’s mass resided in the nuclear core.2

Details on the First-Detected Supermassive Black Hole Binary
The team found a 14-year periodicity in the double-peaked profile of the hydrogen-beta spectral line and in the brightness of both the hydrogen-beta emission line and the optical continuum arising from the nuclear core. These periodicities imply that the “supermassive black hole” is really two black holes of roughly equal mass that orbit one another with a separation of 21.7 light-days or 350 billion miles. This separation is approximately 100 times the distance between Neptune and the Sun.
Figure 1: Seyfert galaxy NGC 5548
Image credit: NASA/ESA Hubble Space Telescope
Further confirmation for a supermassive black hole binary residing in the galactic center of NGC 5548 comes from a very deep exposure image of NGC 5548. This image shows two long tidal tails, indicating that NGC 5548 is the product of two roughly equal mass galaxies that merged about 1 billion years ago. Each of the two galaxies that merged to become NGC 5548 would have contained a supermassive black hole at their respective galactic centers. A billion years is a reasonable time for the orbit of the two supermassive black holes around one another to decay to a distance of about 22 light-days.
NGC 5548 is 244 million light-years away from Earth. It is a little more than five times closer to us than the merger of two 30-solar-mass black holes discovered by the Laser Interferometer Gravitational-Wave Observatory (LIGO). NGC 5548’s proximity to Earth and the very high mass of its black hole binary make it an excellent target for detecting gravitational waves.
Eventually, the two supermassive black holes in NGC 5548’s center will merge. That merger will impact the LIGO instrument with gravitational waves billions of times stronger than those detected from the merger of the two 30-solar-mass black holes. However, it will probably be at least another million years before the merger of NGC 5548’s supermassive black holes occurs. Nevertheless, NGC 5548’s supermassive black holes are already close enough together to radiate detectable gravitational waves.
How Is the Creation Model Affected?
In their paper, the team calls for the search of additional supermassive black hole binaries. Additional supermassive black hole binaries will not only aid research on the properties of gravity and general relativity but also assist in testing cosmic creation models. The predominant big bang creation model predicts that galaxy merger events were common in the early history of the universe. While many images of galaxy merging events have been collected, a comprehensive catalog of the characteristics of supermassive black hole binaries in galaxies would yield truly definitive tests of the leading big bang creation models.
The recent discovery of gravitational waves emanating from the merger of two 30-solar-mass black holes (and the potential discovery of more medium-sized black hole merger events) has been significant in the defense of the biblically predicted big bang creation model. This discovery illuminates a core feature of the creation model by providing a much more detailed understanding of the universe’s firstborn stars and of the subsequent star formation history of the universe. However, presently operating gravity wave telescopes are reliant upon rare merger events (either two medium-sized black holes within a few billion light-years from Earth, or two small black holes or neutron stars in a nearby galaxy) to generate a signal strong enough to detect gravitational waves. Even then, the detectable gravitational signal lasts only a few seconds. But the discovery of a different kind of black hole binary—a supermassive black hole binary—promises to augment scientists’ ability to study gravitational waves.
With access to gravitational waves emanating from both medium-sized and supermassive black hole binaries, astronomers will be able explore new properties of gravity and general relativity. They will be able to gain a greater understanding of the universe’s star and galaxy formation history and, consequently, of the cosmic creation event and development of the universe. This deeper understanding may help remove some of the remaining doubts about the validity of the biblically predicted big bang creation model.3
Subjects: Origin of the Universe, Universe Design

Check out more from Reasons to Believe @ Reasons.org

  1. Yan-Rong Li et al., “Spectroscopic Indication of a Centi-parsec Supermassive Black Hole Binary in the Galactic Center of NGC 5548,” Astrophysical Journal 822 (April 2016): id. 4, doi:10.3847/0004-637X/822/1/4.
  2. Jong-Hak Woo et al., “The Lick AGN Monitoring Project: The MBH-σ Relation for Reverberation-Mapped Active Galaxies,” Astrophysical Journal 716 (June 2010): 269–80, doi:10.1088/0004-637X/716/1/269; John Kormendy and Luis Ho, “Coevolution (or Not) of Supermassive Black Holes and Host Galaxies,” Annual Review of Astronomy and Astrophysics 51 (August 2013): 528–33, 545, doi:10.1146/annurev-astro-082708-101811.
  3. Hugh Ross, A Matter of Days, 2nd ed. (Covina, CA: RTB Press, 2015), 135–44; See Hugh Ross, “Big Bang—The Bible Taught It First!” Today’s New Reason to Believe (blog), Reasons to Believe, July 1, 2000, http://www.reasons.org/articles/big-bang---the-bible-taught-it-first.

About The Author

Dr. Hugh Ross

Reasons to Believe emerged from my passion to research, develop, and proclaim the most powerful new reasons to believe in Christ as Creator, Lord, and Savior and to use those new reasons to reach people for Christ. I also am eager to equip Christians to engage, rather than withdraw from or attack, educated non-Christians. One of the approaches I’ve developed, with the help of my RTB colleagues, is a biblical creation model that is testable, falsifiable, and predictive. I enjoy constructively integrating all 66 books of the Bible with all the science disciplines as a way to discover and apply deeper truths. 1 Peter 3:15–16 sets my ministry goal, "Always be prepared to give an answer to everyone who asks you to give the reason for the hope that you have. But do this with gentleness and respect, keeping a clear conscience." Hugh Ross launched his career at age seven when he went to the library to find out why stars are hot. Physics and astronomy captured his curiosity and never let go. At age seventeen he became the youngest person ever to serve as director of observations for Vancouver's Royal Astronomical Society. With the help of a provincial scholarship and a National Research Council (NRC) of Canada fellowship, he completed his undergraduate degree in physics (University of British Columbia) and graduate degrees in astronomy (University of Toronto). The NRC also sent him to the United States for postdoctoral studies. At Caltech he researched quasi-stellar objects, or "quasars," some of the most distant and ancient objects in the universe. Not all of Hugh's discoveries involved astrophysics. Prompted by curiosity, he studied the world’s religions and "holy books" and found only one book that proved scientifically and historically accurate: the Bible. Hugh started at religious "ground zero" and through scientific and historical reality-testing became convinced that the Bible is truly the Word of God! When he went on to describe for others his journey to faith in Jesus Christ, he was surprised to discover how many people believed or disbelieved without checking the evidence. Hugh's unshakable confidence that God's revelations in Scripture and nature do not, will not, and cannot contradict became his unique message. Wholeheartedly encouraged by family and friends, communicating that message as broadly and clearly as possible became his mission. Thus, in 1986, he founded science-faith think tank Reasons to Believe (RTB). He and his colleagues at RTB keep tabs on the frontiers of research to share with scientists and nonscientists alike the thrilling news of what's being discovered and how it connects with biblical theology. In this realm, he has written many books, including: The Fingerprint of God, The Creator and the Cosmos, Beyond the Cosmos, A Matter of Days, Creation as Science, Why the Universe Is the Way It Is, and More Than a Theory. Between writing books and articles, recording podcasts, and taking interviews, Hugh travels the world challenging students and faculty, churches and professional groups, to consider what they believe and why. He presents a persuasive case for Christianity without applying pressure. Because he treats people's questions and comments with respect, he is in great demand as a speaker and as a talk-radio and television guest. Having grown up amid the splendor of Canada's mountains, wildlife, and waterways, Hugh loves the outdoors. Hiking, trail running, and photography are among his favorite recreational pursuits - in addition to stargazing. Hugh lives in Southern California with his wife, Kathy, and two sons.

Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing