My360 Helper


I received an email asking this question:

I have heard another rebuttal to the fine-tuning argument . . . that maybe you can address. The rebuttal goes like this: “Yes, you are right that changing just one constant a little bit would make human life impossible. But there are ways you can change multiple constants at the same time and still have human life arise. So the constants aren’t really as fine-tuned as you say.” Can you respond to that argument?

Virtually all scientists readily acknowledge that tweaking just one of the fundamental constants (e.g., the electromagnetic coupling constant α), even by small amounts, results in a universe devoid of life. Increasing α causes greater repulsion between like charges, disrupting the stability of elements with more than a few protons. However, decreasing α would result in weaker forces between atoms, negatively affecting the chemical bonding that life requires. Some of these negative consequences are avoided by changing other fundamental constants. Where larger α affects the stability of heavier elements, increasing the strength of the strong nuclear force restores this stability.

When scientists investigate how the universe would change as these two quantities vary, they still find evidence for fine-tuning. Only a small window gives a universe with sufficient carbon and oxygen, as well as hydrogen, for life to exist. But what if a bunch of parameters are adjusted?

The graphics below illustrates the two commonly considered options. The top image shows that we live on a island in the vast ocean of possible configurations of the constants of physics. Change any one too far and life ends up drowning in the ocean. The key question is: What happens when we zoom out to see the rest of the ocean?

island1

Zooming out, do we get the first photo or the second?

island2    island3

Is our island alone and isolated or do many islands capable of life exist?

Maybe Other Islands Remove the Fine-Tuning

Well, one team of physicists asked just that question to see if a universe without a weak nuclear force could support all the life-essential processes. They simulated universes with no weak interaction and adjusted the other parameters (both fundamental—like gravity, electromagnetic, and strong nuclear interactions, as well as cosmological—like baryon number and dark matter density) to try and obtain a universe that behaves similarly to ours. Their research demonstrated that it was possible to find another configuration of parameters that yielded a universe that appeared capable of supporting life. (Another team disputes that the alternate universe would produce enough oxygen though.)

In order to find that island, the scientists had to carefully tune a whole bunch of parameters. While the success of this endeavor indicates that other islands might exist, it also shows that the islands are small and have sharp cliffs.

. . . Or Maybe They Don’t

The team also tried a similar analysis focusing on the cosmological constant (or dark energy). The discovery of dark energy in the late 1990s shocked cosmologists because the amount of this bizarre “stuff” was far less than expected. Instead of a value near the Planck scale (as expected from the best model of the physical laws available), the actual value is roughly 120 orders of magnitude smaller! The team tried to find universes capable of supporting life where the dark energy had values near the Planck scale. They found that no adjustment of the other parameters gave a universe that produced stars that burned for billions of years, synthesized elements up to iron, and underwent supernova explosions necessary for distributing the elements for planet formation.

No amount of changing the fundamental constants gives an island where the dark energy has the value predicted by our best scientific theories! In other words, all the livable universes had a fine-tuned value for the dark energy.

Ultimately, the fine-tuning argument doesn’t rest on the premise that our universe is the only possible configuration. It only requires that of all the possible configurations, only a small fraction meet all the necessary conditions for life. Research into finding other potentially livable universes confirms that our universe belongs to a relatively small group (that may contain only one member)—even if a multiverse exists.

Subjects: Fine-Tuning, Laws of Physics

Check out more from Reasons to Believe @Reasons.org

About The Author

Jeff Zweerink

Since my earliest memories, science and the Christian faith have featured prominently in my life - but I struggled when my scientific studies seemed to collide with my early biblical training. My first contact with RTB came when I heard Hugh Ross speak at Iowa State University. It was the first time I realized it was possible to do professional work incorporating both my love of science and my desire to serve God. I knew RTB's ministry was something I was called to be a part of. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. They operate by the same principles and are committed to discovering foundational truths. My passion at RTB is helping Christians see how powerful a tool science is to declare God's glory and helping scientists understand how the established scientific discoveries demonstrate the legitimacy and rationality of the Christian faith. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. • Biography • Resources • Upcoming Events • Promotional Items Jeff Zweerink thought he would follow in his father's footsteps as a chemistry professor until a high school teacher piqued his interest in physics. Jeff pursued a BS in physics and a PhD in astrophysics at Iowa State University (ISU), where he focused his study on gamma rays - messengers from distant black holes and neutron stars. Upon completing his education, Jeff taught at Loras College in Dubuque, Iowa. Postdoctoral research took him to the West Coast, to the University of California, Riverside, and eventually to a research faculty position at UCLA. He has conducted research using STACEE and VERITAS gamma-ray telescopes, and currently works on GAPS, a balloon experiment seeking to detect dark matter. A Christian from childhood, Jeff desired to understand how the worlds of science and Scripture integrate. He struggled when his scientific studies seemed to collide with his early biblical training. While an undergrad at ISU, Jeff heard Hugh Ross speak and learned of Reasons to Believe (RTB) and its ministry of reconciliation - tearing down the presumed barriers between science and faith and introducing people to their personal Creator. Jeff knew this was something he was called to be a part of. Today, as a research scholar at RTB, Jeff speaks at churches, youth groups, universities, and professional groups around the country, encouraging people to consider the truth of Scripture and how it connects with the evidence of science. His involvement with RTB grows from an enthusiasm for helping others bridge the perceived science-faith gap. He seeks to assist others in avoiding the difficulties he experienced. Jeff is author of Who's Afraid of the Multiverse? and coauthor of more than 30 journal articles, as well as numerous conference proceedings. He still serves part-time on the physics and astronomy research faculty at UCLA. He directs RTB's online learning programs, Reasons Institute and Reasons Academy, and also contributes to the ministry's podcasts and daily blog, Today's New Reason to Believe. When he isn’t participating in science-faith apologetics Jeff enjoys fishing, camping, and working on home improvement projects. An enthusiastic sports fan, he coaches his children's teams and challenges his RTB colleagues in fantasy football. He roots for the Kansas City Chiefs and for NASCAR's Ryan Newman and Jeff Gordon. Jeff and his wife, Lisa, live in Southern California with their five children.



Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing

This site is protected by reCAPTCHA, and the Google Privacy Policy & Terms of Use apply.