A-1 - Encouraged by What You Read?

What comes to mind when you think of water? Personally, water reminds me of some of my favorite activities: canoeing down the spring-fed rivers of southern Missouri, bass fishing in Ozark lakes, watching the torrential downpours of thunderstorms, and deep-sea fishing in the Gulf of Mexico. Beyond the fun and enjoyment water provides, it also plays a critical role in Earth’s capacity to host life (as well as the biochemical processes required by life). Consequently, astronomers ardently search for planets capable of hosting water—and those searches have paid dividends.

Water Detections

Using the Hubble Space Telescope (HST), astronomers made detailed observations of a Neptune-sized planet, HAT-P-26b, orbiting a star 400 light-years away from Earth. HAT-P-26b makes a revolution around its host star every 4.2 days and it transits across the face of the star once per revolution. As the exoplanet starts to transit, light from the host star passes through its atmosphere. The HST’s sensitivity allows astronomers to analyze this light and determine what gases exist there. The measurements reveal the presence of water vapor in quantities that exceed those found in the solar system by a factor of 5.1

Another team of astronomers detected an atmosphere around a low-mass exoplanet. The exoplanet, named GJ 1132 b, orbits an M-dwarf star about 40 light-years away and has a mass of 1.6 times the mass of the Earth, making the exoplanet a super-Earth. Using an instrument called GROND, the team observed GJ 1132 b during 9 transits to look for transmission features indicative of water in the exoplanet’s atmosphere. Along with finding unusually large radii for both the exoplanet and its host star, the observations showed a transmission band consistent with atmospheric water. This was one of the first low-mass exoplanets with a temperature below 1000K to show any spectral features. Although an exciting discovery, additional studies “found that the presence of H2O implied either an H2 envelope or low UV flux from the host star early in the lifetime of the system, and the ongoing presence of a magma ocean on the planet’s surface.”2 Consequently, this exoplanet has no hope of hosting life.

Closer to home, the Cassini spacecraft orbiting Saturn found evidence of water/rock interactions on Enceladus, one of Saturn’s moons. Past observations of the moon revealed a large liquid ocean below a thick layer of ice. More recently, astronomers detected plumes of material escaping from the surface of Enceladus. The Cassini probe flew directly through one of these plumes and detected molecular hydrogen, H2. Although not definite, the most probable source of the hydrogen in the plumes is chemical reactions of water with rocks bearing minerals and organic material.3

Life Requires More Than Liquid Water

It may seem like finding water everywhere we look is a sign that life pervades the universe. That may be true, but one should remember that water ranks as the third most abundant molecule in the universe (behind two forms of molecular hydrogen), in part because hydrogen and oxygen are two of the most abundant elements in the universe. Additionally, water on an exoplanet (or a moon) does not automatically make the exoplanet habitable. It seems like life requires far more than just liquid water. Even early Genesis describes an early Earth covered in water, yet hostile to life.

From a scientific perspective, if we ever want to assess what makes a planet truly habitable, astronomers must find a wealth of planets with varying degrees of similarity to Earth and then determine if life actually exists on any of those planets. As I said nearly a decade ago,

The commonly assumed model . . . is that life arises easily in environments that meet a rather small set of criteria. I will refer to this as the “minimalist” model. In contrast, RTB’s creation model argues that life requires a planet exhibiting numerous parameters fine-tuned to exacting specifications. Planets that meet some, but not all, of these criteria serve as test-beds to distinguish which model best describes reality. The more planets astronomers find, the more powerful tests may be conducted.4

Let the testing begin.

Check out more from Reasons to Believe @Reasons.org

  1. Hannah R. Wakeford et al., “HAT-P-26b: A Neptune-mass Exoplanet with a Well-Constrained Heavy Element Abundance,” Science 356, no. 6338 (May 12, 2017): 628–31, doi:10.1126/science.aah4668.
  2. John Southworth et al., “Detection of the Atmosphere of the 1.6 M Exoplanet GJ 1132 b,” Astronomical Journal 153, no. 4 (April 2017): 191, doi:10.3847/1538-3881/aa6477.
  3. J. Hunter Waite et al., “Cassini Finds Molecular Hydrogen in the Enceladus Plume: Evidence for Hydrothermal Processes,” Science 356 no. 6334 (April 14, 2017): 155–9, doi:10.1126/science.aai8703.
  4. Jeff Zweerink, “What to Think of the Latest Habitable Planet Find,” Today’s New Reason to Believe (blog), Reasons to Believe, October 5, 2010, https://www.reasons.org/explore/blogs/todays-new-reason-to-believe/read/tnrtb/2010/10/05/what-to-think-of-the-latest-habitable-planet-find.


About The Author

Jeff Zweerink

Since my earliest memories, science and the Christian faith have featured prominently in my life - but I struggled when my scientific studies seemed to collide with my early biblical training. My first contact with RTB came when I heard Hugh Ross speak at Iowa State University. It was the first time I realized it was possible to do professional work incorporating both my love of science and my desire to serve God. I knew RTB's ministry was something I was called to be a part of. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. They operate by the same principles and are committed to discovering foundational truths. My passion at RTB is helping Christians see how powerful a tool science is to declare God's glory and helping scientists understand how the established scientific discoveries demonstrate the legitimacy and rationality of the Christian faith. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. • Biography • Resources • Upcoming Events • Promotional Items Jeff Zweerink thought he would follow in his father's footsteps as a chemistry professor until a high school teacher piqued his interest in physics. Jeff pursued a BS in physics and a PhD in astrophysics at Iowa State University (ISU), where he focused his study on gamma rays - messengers from distant black holes and neutron stars. Upon completing his education, Jeff taught at Loras College in Dubuque, Iowa. Postdoctoral research took him to the West Coast, to the University of California, Riverside, and eventually to a research faculty position at UCLA. He has conducted research using STACEE and VERITAS gamma-ray telescopes, and currently works on GAPS, a balloon experiment seeking to detect dark matter. A Christian from childhood, Jeff desired to understand how the worlds of science and Scripture integrate. He struggled when his scientific studies seemed to collide with his early biblical training. While an undergrad at ISU, Jeff heard Hugh Ross speak and learned of Reasons to Believe (RTB) and its ministry of reconciliation - tearing down the presumed barriers between science and faith and introducing people to their personal Creator. Jeff knew this was something he was called to be a part of. Today, as a research scholar at RTB, Jeff speaks at churches, youth groups, universities, and professional groups around the country, encouraging people to consider the truth of Scripture and how it connects with the evidence of science. His involvement with RTB grows from an enthusiasm for helping others bridge the perceived science-faith gap. He seeks to assist others in avoiding the difficulties he experienced. Jeff is author of Who's Afraid of the Multiverse? and coauthor of more than 30 journal articles, as well as numerous conference proceedings. He still serves part-time on the physics and astronomy research faculty at UCLA. He directs RTB's online learning programs, Reasons Institute and Reasons Academy, and also contributes to the ministry's podcasts and daily blog, Today's New Reason to Believe. When he isn’t participating in science-faith apologetics Jeff enjoys fishing, camping, and working on home improvement projects. An enthusiastic sports fan, he coaches his children's teams and challenges his RTB colleagues in fantasy football. He roots for the Kansas City Chiefs and for NASCAR's Ryan Newman and Jeff Gordon. Jeff and his wife, Lisa, live in Southern California with their five children.

Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing