Each planet in our solar system possesses unique and fascinating features. Earth hosts an abundant, dazzling array of life. Mars houses the largest volcanoes and a canyon so vast it would span North America from ocean to ocean. Saturn would float—if you could find a bathtub big enough. But Jupiter stands out, with a 400-year-old storm encompassing a region large enough to contain two Earths, and enough gravitational pull to cause volcanic activity on one of its larger moons. Additionally, Jupiter serves as a shield, minimizing the number of asteroids that hit Earth and cause mass extinctions of life. As scientists find planetary systems around other stars, they naturally want to know whether these systems host similar Jupiter-like planets. After nearly three decades of planet hunting, it looks like Jupiters may be rare.

Many Jupiter-Sized Planets

Although astronomers know of 4000+ exoplanets, they have only determined masses and orbits for roughly a quarter of them (968 as of this publication; filter the catalog with “mass:mjup < 100.0 AND axis:au < 100000.0”). Of those exoplanets with known orbits and masses, 671 have a mass larger than Saturn, or more than 30% of Jupiter’s mass, MJup. Clearly, Jupiter-sized planets make up a majority of the exoplanets found by astronomers. Interestingly, almost 500 of these Jupiter-sized exoplanets orbit closer to their star than the distance from the Sun to Mars. In our solar system, Jupiter orbits at 5.2 AU. (One AU or astronomical unit is the distance from the Earth to the Sun.) Astronomers want to know how commonly Sun-like stars host Jupiter-like planets.

Correcting a Bias

Most of the 4000+ known exoplanets were discovered using either the radial velocity or transit methods. However, these two techniques have the greatest sensitivity to exoplanets close to their host star—much closer than Jupiter’s orbit. Thus, any conclusions drawn from exoplanet data derived solely from these two techniques will give biased information about the frequency of Jupiter-like planets. In contrast, the direct detection method has much more sensitivity to large exoplanets with orbits equal to or larger than Jupiter’s. Using data from all three techniques allows astronomers to gain a more accurate picture.

Suns with Jupiter-Like Planets are Rare

A team of astronomers used the direct detection technique with the Gemini Planet Imager Exoplanet Survey (GPIES). GPIES surveyed more than 300 stars in an attempt to find exoplanets and found nine objects orbiting between 10 and 100 AU. Six were Jupiter-sized planets with masses between 3 and 15 times MJup. The other three were brown dwarf stars with masses more than 25 times MJup.These results, combined with the distribution of Jupiter-sized planets from transit and radial velocity surveys, show that Jupiter-sized planet orbits peak in frequency between 1–10 AU (just like Jupiter and Saturn in our solar system).2On its own, this finding seems to indicate that our solar system is ordinary. However, the paper also found a “strong correlation between planet occurrence rate and host star mass, with stars
M* > 1.5MSun more likely to host planets with masses between 2 and 13MJup” for this range of orbits. In other words, Jupiter-like planets (with mass AND orbit similar to the one in our solar system) form less frequently around stars as small as the Sun.

Today, many assume that our solar system represents most planetary systems that form around stars. But as these studies note, the actual data paints a different picture. In the words of Bruce Macintosh, the principle investigator for GPI:

Given what we and other surveys have seen so far, our solar system doesn’t look like other solar systems . . . We don’t have as many planets packed in as close to the sun as they do to their stars and we now have tentative evidence that another way in which we might be rare is having these kind of Jupiter-and-up planets.

It seems that our planets—and Jupiter in particular—make our solar system stand out from the rest. Yet another reason to marvel at our place in the cosmos. 

 

Check out more from Reasons to Believe @Reasons.org

Endnotes
  1. The difference in distribution and mass of these two classes of objects indicates that they form by different mechanisms. Massive Jupiters likely formed “bottom-up” via the core accretion mechanism (like rocky planets). Brown dwarfs probably formed “top-down” by the gravitational collapse process.
  2. Eric L. Nielsen et al., “The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au,” The Astronomical Journal 158, no. 1 (July 2019): 13, doi:10.3847/1538-3881/ab16e9.

 

About The Author

Jeff Zweerink

Since my earliest memories, science and the Christian faith have featured prominently in my life - but I struggled when my scientific studies seemed to collide with my early biblical training. My first contact with RTB came when I heard Hugh Ross speak at Iowa State University. It was the first time I realized it was possible to do professional work incorporating both my love of science and my desire to serve God. I knew RTB's ministry was something I was called to be a part of. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. They operate by the same principles and are committed to discovering foundational truths. My passion at RTB is helping Christians see how powerful a tool science is to declare God's glory and helping scientists understand how the established scientific discoveries demonstrate the legitimacy and rationality of the Christian faith. While many Christians and non-Christians see the two as in perpetual conflict, I find they integrate well. • Biography • Resources • Upcoming Events • Promotional Items Jeff Zweerink thought he would follow in his father's footsteps as a chemistry professor until a high school teacher piqued his interest in physics. Jeff pursued a BS in physics and a PhD in astrophysics at Iowa State University (ISU), where he focused his study on gamma rays - messengers from distant black holes and neutron stars. Upon completing his education, Jeff taught at Loras College in Dubuque, Iowa. Postdoctoral research took him to the West Coast, to the University of California, Riverside, and eventually to a research faculty position at UCLA. He has conducted research using STACEE and VERITAS gamma-ray telescopes, and currently works on GAPS, a balloon experiment seeking to detect dark matter. A Christian from childhood, Jeff desired to understand how the worlds of science and Scripture integrate. He struggled when his scientific studies seemed to collide with his early biblical training. While an undergrad at ISU, Jeff heard Hugh Ross speak and learned of Reasons to Believe (RTB) and its ministry of reconciliation - tearing down the presumed barriers between science and faith and introducing people to their personal Creator. Jeff knew this was something he was called to be a part of. Today, as a research scholar at RTB, Jeff speaks at churches, youth groups, universities, and professional groups around the country, encouraging people to consider the truth of Scripture and how it connects with the evidence of science. His involvement with RTB grows from an enthusiasm for helping others bridge the perceived science-faith gap. He seeks to assist others in avoiding the difficulties he experienced. Jeff is author of Who's Afraid of the Multiverse? and coauthor of more than 30 journal articles, as well as numerous conference proceedings. He still serves part-time on the physics and astronomy research faculty at UCLA. He directs RTB's online learning programs, Reasons Institute and Reasons Academy, and also contributes to the ministry's podcasts and daily blog, Today's New Reason to Believe. When he isn’t participating in science-faith apologetics Jeff enjoys fishing, camping, and working on home improvement projects. An enthusiastic sports fan, he coaches his children's teams and challenges his RTB colleagues in fantasy football. He roots for the Kansas City Chiefs and for NASCAR's Ryan Newman and Jeff Gordon. Jeff and his wife, Lisa, live in Southern California with their five children.



Email Sign-up

Sign up for the TWR360 Newsletter

Access updates, news, Biblical teaching and inspirational messages from powerful Christian voices.

Thank you for signing up to receive updates from TWR360.

Required information missing

This site is protected by reCAPTCHA, and the Google Privacy Policy & Terms of Use apply.